Biometrics on the Move

Biometrics on the Move

Smart cards and smartphones make play for access control

Biometrics on the MoveMultiple factors of authentication, including biometrics, can increase the probability that a person presenting a card to a reader is the same person who was initially issued the card. Biometrics authenticates identity by measuring and verifying an individual’s unique physical characteristics, such as fingerprints, hand and face geometry, or patterns found in the eye’s iris. Since these identifiers can’t be borrowed or stolen, biometrics provide identity authentication with a strong degree of confidence.

Until recently, biometric templates, such as those for iris recognition, were carried on a plastic credential and presented for authentication by holding the card in front of an iris recognition camera. Now, these same templates can be loaded onto an NFCenabled smartphone along with other digital ID credentials for physical and logical access control.

Going Mobile

Several trends are driving the adoption of physical and logical access control on smartphones and other mobile devices. The first is the inclusion of NFC technology on smartphones, which provides an industry-standard, short-range wireless link for exchanging access-control data across a several centimeter distance so users can “present” credentials on phones to a reader. As the NFC mobile-payment model grows in popularity, it drives further demand for NFC phones which also can be used in physical access control applications. Smartphones that do not feature NFC technology can be securely upgraded to this capability by using an NFC-enabled add-on device such as a microSD card.

Additionally, there is now a new type of identity representation that operates within a trusted boundary and uses the NFCenabled smartphone’s secure element or SIM—usually an embedded tamper-proof integrated circuit, or a plug-in module version. This setup ensures that all transactions between NFC-enabled smartphones, SIM cards and other secure media devices also can be trusted inside the access-control managed network.

Within this trusted boundary, organizations can provide mobile access-control credentials in either of two secure and convenient ways: Connecting the mobile device to the network via a USB or Wi-Fi-enabled link and use an Internet portal, similar to how traditional plastic credentials are provisioned, or issue digital credentials over-the-air via a mobile network operator, in much the same way that today’s smartphone users download apps and songs. To issue digital credentials, the NFC-enabled smartphone communicates with a Trusted Service Manager (TSM), which interfaces either directly to the mobile network operator (MNO) or to its TSM, delivering a key to the SIM card.

The mobile access model offers a number of benefits. It eliminates credential copying, and makes it easier to issue temporary credentials as needed, cancel credentials if a device is lost or stolen, and monitor and modify security parameters when required. The mobile model is ideal for converged physical and logical access, enabling smartphones to be used for multiple applications including cashless vending; opening residential locks; accessing an on-line physical access-control reader; entering a building protected by an NFC-enabled electromechanical lock; logging on to a PC; generating OTP software tokens to log onto network devices; and implementing biometric authentication.

How Biometrics Work

Biometrics verify that a card holder has been bound to his or her card, using something that can only be possessed by the person to whom the card was issued. Biometric data is unique to each person and cannot be forgotten, lost or stolen. Because of this, biometric technology offers enhanced security when compared with conventional identification methods. It does not rely on passwords, pin codes or photographic ID, and is too complex to forge. Biometrics are generally used as part of a verification system, which checks a biometric that has been presented by an individual against the biometric in a database linked to that person’s file—a one-to-one system, or an identification system—referred to as one-to-many systems because they are used to identify an unknown person or biometric.

Biometrics has long been used by the government, and is a key element of the latest federal identity standards. For instance, the Department of Defense (DoD) has incorporated biometrics into the common access card (CAC) that controls entry to DoD facilities and information systems. Biometrics is an integral part of the latest identity credentials for federal agency employees and contractors. In 2005, the National Institute of Standards and Technology (NIST) released Federal Information Processing Standards Publication 201 (FIPS 201), which defined the identity vetting, enrollment and issuance requirements for a common, highly-secure identity credential called the Personal Identity Verification (PIV) card that leverages both smart card and biometric technology. In 2006, FIPS 201-1 further specified that a facial image, as well as fingerprint biometrics, be included on PIV cards.

On NFC Smartphones

The same benefits associated with storing biometric templates on physical smart cards also apply to the mobile accesscontrol model. Next-generation mobile access platforms enable users to implement biometrics templates similar to traditional physical credential implementation while offering the added benefits of being able to carry the credentials in their smartphones. For instance, a smartphone can carry credentials that securely store biometric templates, such as those for iris recognition. To present these credentials for authentication, the user simply holds the smartphone in front of an iris recognition camera. A variety of biometric templates can be securely stored in these digital credentials.

The smartphone offers a portable database for template storage well suited for installations that span a large number of sites. Storing the template on a digital NFC smartphone credential also simplifies system start-up, and is ideal for supporting unlimited user populations. It reduces installation costs by eliminating the redundant wiring requirements for traditional biometric template management on plastic cards. And, because an access-control system can continuously read the biometrics data carried inside a smartphone, this model enables pre-authentication before someone even arrives at a door, speeding and simplifying each access transaction.

Another advantage of mobile access control is simplification in deployment and management of biometric security and other multi-factor authentication applications. When a situation arises that requires a higher level of security, organizations can dynamically invoke two-factor authentication. To do this, an application can be pushed to the phone that, for instance, requires the user to enter a 4-digit pin, perform a gesture swipe on the phone or present biometric data within the phone to a reader before it sends the message to open the door. With this approach, multifactor authentication becomes a contextual, real-time, managed service.

Latest Developments

HID Global is partnering with a number of leaders in the biometric space to deliver HID-enabled credential solutions that support biometrics, enabling users to securely store a wide variety of biometric templates. An alternative to storing the biometric template on the card is to store them in the reader, on servers, and/or in individual panels. This would be necessary for users of proximity or magnetic stripe cards that are unable to store the template.

The next step is to deploy biometrics on NFC-enabled smartphones, as well. In March 2012, Iris ID Systems Inc. announced interoperability between its IrisAccess platform and NFC-enabled BlackBerry smartphones equipped with HID Global’s iCLASS digital credentials. This means that BlackBerry Bold 9900/9930 smartphones activated with HID Global’s iCLASS digital credentials are interoperable with the installed base of iCLASS readers that are embedded in the Iris iCAM 7000 series for applications ranging from physical access systems in buildings, to systems that track time and attendance, to other identity-dependent solutions. Using an NFC-enabled Black- Berry smartphone, the iris templates of a user are securely stored on an iCLASS digital credential on the phone. This credential can then be presented for authentication by simply holding the NFC-enabled BlackBerry smartphone in front of an iCAM7000 series iris camera, in the same way that users present physical iCLASS smart cards to these readers.

Biometrics continue to be an important element in access-control systems that use multi-factor authentication for the highest levels of security. The latest solutions can be deployed on a combination of traditional plastic ID cards or NFC-enabled smartphones, for a variety of commercial and government applications. The mobile access-control model using smartphones is particularly compelling, and is enabled by NFC technology and a new access-control data structure that operates in a trusted boundary to significantly improve overall system security and user convenience. This offers an ideal platform for converged physical and logical access that includes biometric technology for identity authentication.

This article originally appeared in the May 2013 issue of Security Today.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3