The First Rule, Encrypt

When implementing a card-based system, protect yourself

It used to be that the most important aspect of implementing an electronic access control system was the simple control of who went where when. Today, the requirements of these sophisticated systems go beyond. Indeed, one of the security challenges frequently heard surrounds denying hackers, cyber-punks and associated bad actors from using the access system as a gateway to an organization’s sensitive IT network.

As an RFID access card gets close to its reader, it begins to wirelessly transmit its binary code. If using 125KHz proximity, then the wireless protocol is typically Wiegand, an older technology that can no longer provide the security needed today. In a worst case scenario, hackers could simply lift that fixed Wiegand clear text, retransmit it to the card reader and, from there, physically enter the facility and thereby the network, allowing these characters free rein to target the IT system.

In fact, the Federal Trade Commission (FTC) has been apprised of so many cyber attacks, and the threat these hacks pose, that it is now holding companies responsible for not implementing good cybersecurity practices. Data encryption is part of good practice and is, indeed, an opportunity for the security industry.

3 Major Elements to Encryption

Authentication. This verifies that someone is who they say they are. Credentials are compared to those on file in a database. When matched, the user is granted access. (“Yes, badge #1234 is in our database. Go ahead.”) Settings are defined by an administrator. For example, in a high security facility, the administrator may demand multifactor authentication, using a card plus PIN.

Integrity. This assures that digital information is uncorrupted and only accessed or modified by those authorized. (“Nobody has messed with this number.”) Data must not be changed in transit or altered by an unauthorized person or program. If data gets corrupted, then redundancies restore the affected data to its original state.

Non-repudiation. This means that users cannot deny the authenticity of their signature on a document or the sending of a message that they originated. (“Nice try but we know that YOU did this.”) A digital signature not only ensures that a message or document has been electronically signed by the person but also ensures that a person cannot later deny they furnished it.

Here is How Encryption Works

Encryption consists of both an algorithm and a key. Once a number is encrypted, the system needs to have a key to decrypt the resultant cyphertext into its original form. There are two varieties of algorithms— private (symmetric) and public (asymmetric).

Private key encryption uses the same key for both encryption and decryption. Be aware—if the key is lost or intercepted, messages may be compromised. Public key infrastructure (PKI) uses two different but mathematically linked keys. One key is private and the other is public.

With PKI, either key can be used for encryption or decryption. When one key is used to encrypt, the other is used to decrypt. The public portion of the key is easily obtained for all users. However, only the receiving party has access to the decryption key allowing messages to be read. Systems may use private encryption to encrypt data transmissions but use public encryption to encrypt and exchange the secret key.

Using one or both these algorithms, access credential communications may be encrypted. Many modern cards support cryptography. Look for terms such as 3DES, AES (which the government uses to protect classified information), TEA and RSA.

Adding Encryption into an Access Control System

If concerned with hacking, consider more secure 13.56 MHz smart cards over 125 KHz proximity cards. Look for the term “Mifare,” a technology from NXP Semiconductors. The newest Mifare standard, DESFire EV1, includes a cryptographic module on the card, adding an additional layer of encryption to the card/reader transaction. DESFire EV1 protection is especially important for customers wanting to use secure multi-application cards for access management, public transportation or closed-loop e-payment.

Another valuable option is Valid ID, an anti-tamper feature for contactless smartcard readers, cards and tags. Embedded, it adds yet an additional layer of authentication and integrity assurance to traditional Mifare smartcards. Valid ID helps verify that sensitive access data programmed to a card or tag is indeed genuine and not counterfeit.

Encrypted Cards and Readers Inhibit Hackers

Whether you need to guard against state sponsored terrorists or the neighborhood teen from hacking the electronic access control systems that you implement, security today starts with encryption. But, that’s just a beginning. To take steps that will further hinder hackers, ask for your manufacturer’s Cybersecurity Vulnerability Checklist.

This article originally appeared in the August 2017 issue of Security Today.

Featured

  • Creating More Versatility

    Today, AI has become top of mind for most security professionals. It is the topic of conversation in the technology world and continues to transform the way data is used to make important business decisions. Read Now

  • Report: 78 Percent of CISOs Seeing Significant Impact from AI-Powered Cyber Threats

    Darktrace recently unveiled its 2025 State of AI Cybersecurity report. The findings reveal that 78% of Chief Information Security Officers (CISOs) surveyed say that AI-powered threats are having a significant impact on their organizations, a 5% increase1 from 2024. While an increasing number of CISOs report feeling a significant impact from AI threats, more than 60% now say that they are adequately prepared to defend against these threats, an increase of nearly 15% year-over-year. However, insufficient AI knowledge and skills and a shortage of personnel and talent continue to be listed as the two top inhibitors to a successful defense. Read Now

  • Teaching AI New Tricks

    You have probably heard that AI-enabled security cameras are evolving the role of traditional surveillance cameras, shifting the focus from passive monitoring to active problem-solving and operational insights. AI technology changes fast, so what is new can be considered only news in just a few months. Read Now

  • From the Most Visible to the Less Apparent

    The Cybersecurity and Infrastructure Security Agency (CISA) states “There are 16 critical infrastructure sectors whose assets, systems, and networks, whether physical or virtual, are considered so vital to the United States that their incapacitation or destruction would have a debilitating effect on security, national economic security, and national public health or safety or any combination thereof.” Read Now

New Products

  • ComNet CNGE6FX2TX4PoE

    The ComNet cost-efficient CNGE6FX2TX4PoE is a six-port switch that offers four Gbps TX ports that support the IEEE802.3at standard and provide up to 30 watts of PoE to PDs. It also has a dedicated FX/TX combination port as well as a single FX SFP to act as an additional port or an uplink port, giving the user additional options in managing network traffic. The CNGE6FX2TX4PoE is designed for use in unconditioned environments and typically used in perimeter surveillance.

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.