Plan Might Have a Weakness

Plan Might Have a Weakness

Cybercriminals can cause a security breach for unprepared organization

Cybersecurity and physical security no longer exist in two different worlds. Each now supports and depends on the other as part of a comprehensive risk and liability management program. Criminals can exploit weaknesses in either area of security to enable a breach, and cause potentially catastrophic consequences for an unprepared organization.

When the conversation is centered on cybersecurity, often the focus is on hardening the network, creating better passwords, avoiding malware and strengthening the firewall. These are all vital components of cyber hygiene and should be maintained to the fullest extent at all times. But alone, they are not enough to keep your data safe from hackers.

The surprising reality is that one of the most common ways for a hacker to gain access to an organization’s data is by walking through the entrance to your facility. Once inside, they can steal a laptop or server for data or access to the network, plug into a network port to create a backdoor network entrance they can use whenever they want, or pop a flash drive into a computer to download files and folders containing sensitive financial information— or to upload malware.

This vulnerability at the entrance can be a tremendous weakness, and one that is too easily overlooked when planning for optimal cybersecurity. As long as there is the possibility of an unauthorized person entering the premises, you are at a much higher risk for a cybersecurity breach.

Because building and perimeter entrances are key points for physical security, much of the technology for physical security devices has been developed to protect entrances. Even as new technologies have emerged, they have mostly been a variety of protections for standard swinging doors, which have long been used to enter and exit buildings. The use of doors has typically and traditionally been an architectural decision, with door styles selected for their design aesthetic or user convenience with little consideration for security.

Generally, the biggest security concern considered when installing an entrance was compliance with fire codes and other emergency exit guidelines. While it is still important to consider these factors, it has now become necessary to consider the entrance as a primary factor in cybersecurity best practices.

Installing standard swing doors at any location in a facility presents risk, as their design does not prevent unauthorized intrusions. Once a swing door is open, even if it has been unlocked using authorized credentials, an unlimited number of people can enter. What is often considered basic politeness—holding the door for the person behind you—can in fact be an enormous security risk. Unless there is a guard at the door, there is no prevention for tailgating (additional people following someone through the door). Worse, unless it has special alarms, a door can be propped open and left that way indefinitely.

Even the presence of trained security officers is no guarantee of keeping cybercriminals out of your facility. For them, it can even become something of a sport to get past guards—in fact, there is even a name for this: social engineering. You can read virtually unlimited articles and blogs about this online. Many hackers openly discuss the tactics they use to get through even the most stringent officer-manned entrances, and tell stories about some of their biggest achievements. Fortunately, most of the exploits that are being written about were done in the name of penetration testing, which looks for an organization’s vulnerabilities so that they can address them—but the ease with which they are able to enter secure facilities shows that this is almost certainly happening, unsanctioned, on a regular basis.

Once a cybercriminal is inside your facility, you have lost most of the battle to protect your data. At that point it is quick and simple for them to plug into an IP port, access your network, and perform whatever actions they want. If they walk in and out without having been noticed, you may not even know that there has been a breach until data turns up corrupted, operations cease to function properly, or the stolen data is utilized or ransomed back to you—at which point the damages only multiply.

The bottom line is simple: to keep your data safe, you need to address physical security and you must have a fully secure entry. Security entrances offer a unique level of protection as they not only fully prevent tailgating, one of the greatest risks presented by standard swing doors, but also verify the identity of every individual entering a facility. They cannot be compromised in the way that a security guard can through social engineering, and they cannot be fooled or tricked. When integrated with access control systems, they reliably deter and detect unauthorized entry attempts. Certain types can even prevent unauthorized entry without supervision. And, they also enable accurate monitoring of who is in the building at all times.

Security entrances work well both against lone actors and organized hacker groups. They enable access to authorized individuals who need to be in your facility while keeping unwanted visitors, including those who are intent to steal your data, out of your facility.

Security entrances come in a wide range of assurance levels, as well. For example, they can take the form of waist high turnstiles for controlling high volumes of traffic, to full height turnstiles, to optical turnstiles, to security revolving doors and mantrap portals that make it close to impossible to tailgate into your facility, with sensors that recognize shapes, size and volume and stop entry.

One additional point must be made about the vulnerabilities presented to cybercriminals at the entrance. Today, any device on the IoT—from a smart fish tank to an elevator system—could be used by hackers as an entry point to the network. The same is true for physical security products from surveillance cameras to Wi-Fi locks. The moment a device is connected to the network, it becomes a potential attack surface for a hacker to use to reach the network, from which they can implant malware, steal data or cause many other sorts of mayhem that disrupts business operations. Every IoT-connected device used in your organization must be properly hardened to prevent this from happening.

For that reason, it is important to take all possible measures to harden your networked security entrances against hacking. There are several protocols you can easily implement to accomplish this.

1. Performing third-party penetration testing is essential across your digital networks, and security entrances should be included in the process. It’s recommended that this testing be conducted on a regular basis, as hackers are constantly updating their tactics.

2. Lock down the control panel to authorized users only, and lock it away entirely at the end of the day so that it is out of the hands of anyone looking to get inside.

3. Make sure that physical and cybersecurity personnel are in communication and agreement as to both physical security protocols and cyber security updates.

4. Limit the number of users that have access to the security system, including entrance operation.

The boundaries between physical security and cybersecurity are disappearing, as each is an essential component of the other. Savvy cyber criminals often attempt to gain entrance into a facility in order to access data, steal intellectual property and otherwise cause harm to an organization. The risks and liabilities can be catastrophic—so it is important to ensure you are as prepared as possible.

This article originally appeared in the July/August 2019 issue of Security Today.

Featured

  • 7 Reasons Why Governments Need to Regulate AI

    Recently, Elon Musk unveiled two remarkable AI applications. A humanoid robot named Optimus, with its remarkable human-like speech and movements, and a fully autonomous car, absent steering wheel and pedals, called Cybercab. While these examples represent a broad trend of AI integration across industries, they highlight technology’s transformative potential, prompting a need for regulation to ensure it is used responsibly, securely and ethically. Read Now

  • OR Code Phishing on the Rise According to New Report

    KnowBe4 recently released its Q3 2024 Phishing Report. This quarter's findings reveal the most frequently clicked email subjects in simulated phishing tests, demonstrating the continued efficacy of HR and IT-related phishing attempts. KnowBe4’s Q3 2024 Phishing Report reveals that HR and IT-related phishing emails claim a significant 48.6% share of top-clicked phishing types globally. Despite evolving techniques by bad actors, phishing emails remain among the most prevalent tools for executing cyberattacks. Read Now

  • United HealthCare CEO Killed in Targeted Attack in New York City

    United HealthCare CEO Brian Thompson was killed in a targeted attack early Wednesday in Manhattan Read Now

  • Theft, Crime Driving Retail Workers to Look for New Jobs

    More than four in ten retail workers in the U.S. say they are likely to leave their current job in the next 12 months due to personal safety concerns, according to new research conducted by the Loss Prevention Research Council (LPRC) in partnership with Verkada. Read Now

Featured Cybersecurity

Webinars

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises. 3

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3