The Role of Confidential Computing in Protecting Cloud Applications and Sensitive Data from Breaches

Today, encrypting data is popular for protecting private information at rest and in transit, but protecting data in use in an efficient manner has proven difficult. No matter the challenge, organizations handling sensitive data that needs to be secured are tasked with addressing today’s threats targeting the confidentiality and integrity of the data or the application processing it, when in system memory.

Confidential computing is a new approach that delivers security benefits for applications processing sensitive information – including Personally Identifiable Information (PII), financial data and Protected Health Information (PHI). Use cases span public cloud, multi-party computation, data security, mobile devices, Internet of Things (IoT) devices, Point of Sales (PoS) systems, and many more. In fact, the potential use cases where a confidential computing environment provides security and value benefits to the developer or end-user continue to emerge as awareness of the technology increases.

According to the Confidential Computing Consortium: “Confidential computing is the protection of data in use using hardware-based Trusted Execution Environments (TEE). A Trusted Execution Environment is commonly defined as an environment that provides a level of assurance of data integrity, data confidentiality, and code integrity. A hardware-based TEE uses hardware-backed techniques to provide increased security guarantees for the execution of code and protection of data within that environment.”

Because the protected memory regions, or secure enclaves, established by a TEE provide encryption for data in use, they render private data invisible to cloud providers and host operating systems. They increase the level of security for organizations that manage regulated and sensitive data by preventing unauthorized entities any access or modification of data and applications while they are in use.

These unauthorized entities include anyone or thing with physical access to the hardware, including system administrators, the infrastructure owner, service providers, the host operating system and hypervisor, and other applications on the host. Data confidentiality ensures any unauthorized entity cannot access data while it is in use within the TEE. Data integrity prevents unauthorized entities outside the boundary of the TEE from changing data when it is being used. Code integrity refers to the fact that code in the TEE cannot be replaced or modified by unauthorized entities. Contrary to approaches that do not use a hardware-based TEE, these attributes assure organizations that information is kept confidential, and that the computations performed are correct, enabling organizations to fully trust the results of the computations.

With more attacks against storage and network devices foiled by data at rest and in transit security measures, hackers are now turning their attention to and targeting data in use. And with more data moving to the cloud, traditional network and physical perimeter security cannot fully protect organizations from such attacks. Attack patterns against cloud-based code and data in use include insider threats, firmware compromise, and hypervisor and container breakout. 

The protection of data and applications during execution is increasingly important for data stored and processed on edge, mobile, and IoT devices, where processing can occur in remote and often difficult areas to secure. Providers and manufacturers of edge devices must be able to prove that access to personal data is protected, that data cannot be seen by third parties or device vendors during processing and sharing, and that those protections meet regulatory requirements due to the often very sensitive personal data being generated or processed.

In the context of the public cloud, organizations must trust a multitude of elements that form public cloud infrastructures, including the provider’s host operating system, hypervisor, hardware, the firmware for core and peripheral devices, and the cloud provider’s orchestration system itself. While these providers aim to secure all these public cloud layers, confidential computing delivers security guarantees and significantly enhances the security of the applications and data deployed there.

A hardware-based TEE securing data and applications in use makes it significantly more difficult for an unauthorized entity – including one with physical access to the hardware, privileged access to the orchestration system, or root access to the host hypervisor or OS – to attack the protected data and application code. Confidential computing eliminates even the public cloud provider from the Trusted Computing Base (TCB) with attestation of platform hardware ensuring trust in the TEE. This allows those workloads to migrate to the public cloud which previously were restricted due to compliance requirements or security concerns.

For example, an application of confidential computing called private multi-party analytics involves multiple parties possessing private information that needs to be combined and analyzed without exposing the underlying data or machine learning models between parties. This use case can be applied to detecting or developing cures for diseases, preventing financial services fraud, or gaining previously unseen business insights. For example, multiple healthcare organizations can combine data to train a machine learning model to enable more accurate detection of cancers using radiology information. But in this use case, confidential computing ensures the private patient information remains confidential to the dataset owner.

Organizations can now be sure that sensitive information on remote systems is secured against compromise or attack, and this includes protection from insider threats from any partnering organizations. With confidential computing, organizations can also validate the integrity of the code processing that data. By integrating key management services, data can be decrypted in the TEE and kept secure when combined and analyzed, with the computed results being returned to each party in an encrypted format. Throughout the entire process the information remains secure, ensuring its privacy while it is transferred, during computation, and when stored. Confidential computing thereby provides the basis for complete end-to-end protection of confidential data throughout the workload lifecycle.

Confidential computing can help drive data sharing and analytics on a global basis, allowing organizations to leverage datasets previously unable to be used for collaborative exchange and analysis with other organizations. Private multi-party analytics reduces concerns and risks around security issues, loss of privacy and regulatory impacts.

Those responsible for public cloud migration and applications handling sensitive data, including those in regulated industries, should now evaluate confidential computing as a new approach to reducing the risk of a data breach.

Featured

  • Meeting Modern Demands

    Door hardware and access control continue to be at the forefront of innovation within the security industry, continuously evolving to meet the dynamic needs of commercial spaces. Read Now

  • Leveraging IoT and Open Platform VMS for a Connected Future

    The evolution of urban environments is being reshaped by the convergence of Internet of Things (IoT) technology and open platform VMS. As cities worldwide grapple with growing populations and increasing operational complexities, these integrated technologies are emerging as powerful tools for creating more livable, efficient, and secure urban spaces. Read Now

  • Securing the Future

    Two security experts sit down with Security Today’s editor in chief Ralph C. Jensen to discuss what they see emerging and changing over the next several years along with how security stakeholders can harness these innovations into opportunities. Read Now

  • Collaboration Made Easy Using a Work Management Platform

    Effective collaboration between security operators, teams and other departments is critical to the smooth functioning of organizations. Yet, as organizations grow in complexity, it becomes more difficult for teams to coordinate with each other. This is compounded by staffing shortages, turnover and ineffective collaboration tools. Read Now

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities