Connecting Networks

Connecting Networks

Creating safer workplaces during the COVID-19 pandemic

The Internet of Things (IoT) is turning dumb houses into smart homes. It is also revolutionizing access control systems for all types of commercial buildings, from small offices and retail shops to enterprise campuses and sprawling factories. Although digital locks, keyless entry, RFID card readers and security cameras have been around for many years, IoT technology has transformed building automation, bringing a new level of data-driven security, control, reliability and safety to the workplace.

The convergence of ultra-low-power IoT devices, cloud connectivity and advanced security technologies has enabled developers to create highly sophisticated, versatile and resilient access control systems. The ongoing Covid-19 pandemic has also added a new and unprecedented dimension of complexity to the workplace as evolving health screening regulations require even greater scalability, security and upgradability for access control systems.

To ensure the security of a building, its occupants and its contents, network and security system architects must consider all points of entry, anticipated threats and the ever-changing credentials of those seeking access to a building or campus.

A comprehensive access control system can include a multitude of devices such as smart locks, security sensors, keypads, card readers, surveillance cameras, gates, health screening kiosks, and a wide array of sensors to help monitor maximum occupancy, elevated body temperature and facial mask compliance. Integrated through a robust network, these devices provide real-time status and control of the entire system.

Whether the scale of an access control system is a set of smart home door locks, health screening stations at building entrances or hundreds of secured doors in a large hotel or office, the costs and complexity of maintaining and upgrading the control network continue to increase. Whether running on an on-site computer or hosted by a cloud-based remote monitoring center, an access control system will benefit from using low-power wireless connectivity and IP, to unite all of the access components into an IP-based network that can extend across long distances inside and outside of a building.

Current best practices make it possible to implement robust wireless networks that deliver the flexibility and scalability to aggregate a multitude of devices under a single standard: Wi-Fi HaLow.

WHAT IS WI-FI HALOW AND WHY IT IS A GAME CHANGER FOR ACCESS CONTROL

Wi-Fi HaLow is a low-power, long-range version of the popular Wi-Fi standard that provides 10 times the range, 100 times the coverage area and 1000 times the volume of traditional Wi-Fi technology. These attributes make it an ideal wireless backbone for today’s access control systems, especially those serving large enterprises with multiple entry points, locks, cameras and many other security devices.

The IEEE 802.11ah protocol was developed to meet the lowpower, long-range connectivity requirements of IoT devices. The standard was ratified in 2016, and dubbed “Wi-Fi HaLow” by the Wi-Fi Alliance. The commercial rollout of Wi-Fi HaLow technology is well underway, with transceivers, SoCs and modules available now to system developers, and a certification program is expected in 2021.

Wi-Fi, in all of its manifestations, is the most pervasive short-range wireless protocol used today in homes, offices and public spaces. As Wi-Fi technology continues to evolve, the rapid growth of the IoT has sparked a rethinking of Wi-Fi, exposing technological gaps and revealing new ways the protocol can progress to meet the needs of our increasingly connected world.

Wi-Fi HaLow fills these gaps by providing an ultra-low-power wireless solution that connects larger numbers of IoT devices at much longer distances than conventional Wi-Fi, and at a higher data rate and security level than alternatives like Bluetooth, Zigbee or Z-Wave. Wi-Fi HaLow supports both indoor and outdoor applications, such as battery-powered wireless doorbells, security cameras, drones and surveillance systems. The lower the frequency, the better the penetration, and as a sub-1 GHz protocol, its RF signals can pass through walls and other barriers more easily than competing 2.4 GHz options, let alone even shorter range 5 GHz and 6 GHz radios. A single Wi-Fi HaLow access point (AP) can also reach thousands of connected devices, bypassing complex, bandwidth-constrained mesh networks, thereby simplifying installation and minimizing total cost of ownership.

The Wi-Fi HaLow standard’s unique combination of native IP support, high data rates, low latency, exceptional energy efficiency, long-range connectivity and security features makes it an ideal protocol choice for integrated access control systems. In addition to supporting smart locks, security cameras, card readers, gates and myriad wireless sensors, these systems also must support emerging security and health screening devices deployed in response to the COVID-19. For example, the seemingly simple act of entering the front door of an office involves multiple decisions: confirming a person’s identity, validating the security profile, and assessing the current environment in which a person seeks access.

Adding to the complexity of existing secure access protocols, new COVID-19 screening procedures require low-latency, sessionoriented connections of multiple inputs and outputs supported by an integrated system controlling hundreds or even thousands of connected devices. Wi-Fi HaLow is an ideal wireless protocol for these increasingly complex and diverse access control tasks.

THE HALOW EFFECT: SIMPLIFYING AND SCALING ENTERPRISE ACCESS CONTROL SYSTEMS

Security and access control devices in large-scale commercial buildings and campuses typically include electronic strikes, magnetic plates, hybrid smart locks, external keypads, RFID card scanners, and egress triggers on the inside of entries such as passive infrared (PIR) motion detectors and request-to-exit (REX) buttons. With new COVID-19-related health policies and procedures in place, many commercial buildings and offices have added health-screening kiosks, thermal cameras to monitor body temperature, and video cameras to help ensure health compliance such as wearing a facemask.

In a typical access network, a PC-based security system connects to a control station, which in turn connects to low-voltage power transformers that energize locks or change their states. Many of these connections traditionally use wireline technologies, such as PoE, which provides control signals and power to a gateway controller located up to a maximum of 100 meters away. Some access control systems use a hybrid distribution network of PoE and RS-485 cables to reach proprietary access points connecting to wireless smart locks on the doors of nearby rooms.

Network and security system providers serving commercial buildings are increasingly turning to wireless technology as an alternative to wireline when it comes to scaling the access control system and adding new devices or rerouting existing network connections. Wireless connectivity makes it easier to expand or upgrade these systems without the expense and hassle of running new cables to often hard-to-reach places.

Wireless protocol options include those operating at 2.4 GHz or sub-GHz frequencies and those that support point-to-point, star and mesh network configurations at various power levels, data rates and ranges. The challenge for developers is to find a wireless “sweet spot” that minimizes system cost and complexity without compromising coverage, performance, latency, security or energy efficiency.

Wi-Fi HaLow can help simplify enterprise access control systems by reducing the costs of security network infrastructure, as well as the time and expense of cable installation. The protocol’s energy efficiency helps reduce maintenance costs by minimizing the frequency of battery changes for IoT devices, and its fast data rates and low latency also streamline over-the-air (OTA) firmware updates. Imagine a scenario without HaLow where hundreds of hotel room door locks require a security firmware patch to be loaded by going door by door.

In addition, Wi-Fi HaLow uses a simplified star network capable of connecting large numbers of wireless sensors, health compliance systems and door locks without the need for intermediary proprietary controllers or sub-gateways to connect to the Internet. The access control network can be as simple as a Wi-Fi HaLow AP connected to a single PoE cable on each floor of a building, enabling each lock to operate as a locally controlled or cloud-based device.

Wi-Fi HaLow can also serve as a backhaul network to replace the tangle of low-speed cables running between the backbone network and clusters of connected devices. When an IT administrator needs to add new devices to a wireline network, installing or rerouting PoE and RS-485 cables can drive up labor and materials cost. Whether adding video, thermal imaging or other multi-factor authentication capabilities to a wireless smart lock, Wi-Fi HaLow is fully capable of handling the task with greater ease and at lower cost than upgrading wireline networks.

With its long-distance sub-GHz signal reach (up to 1 km), the benefits of Wi-Fi HaLow can also extend well beyond the interior of a building to control peripheral access points outside at the edge of the property. The protocol can connect multiple sensing devices, such as motion detectors and proximity sensors that provide early warning of approaching threats, as well as thermal imaging and facial recognition systems that help ensure the health of a building’s occupants. Other long-range wireless networks such as LoRa and Sigfox can only support very low data rates for small packets of data.

Wi-Fi HaLow solves coverage and range issues with a single, simplified standard. For example, one Wi-Fi HaLow AP can support up to 8,191 devices, more than the number of rooms in the world’s largest hotels. The sub-1 GHz RF signals can penetrate walls, doors, windows, ceilings, floors and other obstacles. Wi-Fi HaLow signals can extend farther than existing versions of Wi- Fi and other short-range wireless standards, with ranges that can reach devices that would normally require costly wireline connections. Because it is part of the IEEE 802.11 standard, a Wi- Fi HaLow network can also coexist with Wi-Fi 4, Wi-Fi 5 and Wi- Fi 6 networks without impacting RF performance. Wi-Fi HaLow is also an inherently secure wireless protocol. Its native support for IP and the Wi-Fi Protected Access 3 (WPA3) standard enhances the security of OTA firmware updates and cloud-based connectivity.

CONNECTING THE FUTURE OF SECURE ACCESS CONTROL NETWORKS

With the rapid rise of the IoT, access control systems for commercial buildings and offices are evolving to meet market demands for better security, energy efficiency, lower operating costs, and tenant convenience, health and safety.

The persistence of the COVID-19 pandemic has not only upended our lives, but it has also impelled IT and HR professionals to rethink access control best practices and add new health monitoring and screening technologies to the workplace. Even when the pandemic finally abates, it’s likely that enterprise access control systems will continue to use some of the new monitoring systems in place to ensure the safety of building occupants and their guests.

The advent of Wi-Fi HaLow will help network architects and access control developers solve a number of building automation challenges. Wi-Fi HaLow overcomes the distance limitations, network congestion and higher power consumption of conventional Wi-Fi and other 2.4 GHz protocols, as well as the limited number of wireless devices that can be connected to a single access point.

These limitations impede new IoT-centric business models that are emerging across industries to enable a truly connected world. By addressing these challenges, Wi-Fi HaLow is gaining momentum in the market as a standards-based wireless solution that delivers the right balance of long range, high capacity, low power, high data rates and low cost of deployment.

This article originally appeared in the September / October 2021 issue of Security Today.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3