Implementing Emerging Guidelines

Failure to meet regulations, guidelines may lead to regional sales loss

Governments around the world are creating Internet of Things (IoT) security legislation and regulations designed to keep users safe in an increasingly connected world. Connectivity is good and, in fact, great but bad things can happen to people with unprotected or poorly protected IoT devices. Failing to meet these regulations or guidelines may lead to the inability to sell products in a region and thus to lost revenue.

Layers for Attacks in the IoT
IoT security is necessary for all the things that connect to the internet to share data. This includes smart cars, smart cities and energy, smart industry, and the smart home and its numerous consumer devices. As shown in Figure 1, the IoT architecture consists of three layers:

  • Devices that send and receive data and commands
  • A network that conveys data and commands
  • Servers, or the cloud, that gather data, analyze and send commands

IoT Security Regulations
To prevent attacks, countries and regions around the world are creating IoT security guidelines and regulations.

In 2018, the United Kingdom’s Department for Digital, Cultural, and Media & Sport published its Code of Practice for Consumer IoT Security (“CoP”) [1]. These 13 guidelines, listed in Table 1, identify good practices for IoT security. The UK is now considering making their current recommendations mandatory.

  1. No default passwords
  2. Implement a vulnerability disclosure policy
  3. Keep software updated
  4. Securely store credentials and security-sensitive data
  5. Communicate securely
  6. Minimize exposed attack surfaces
  7. Ensure software integrity
  8. Ensure that personal data is protected
  9. Make systems resilient to outages
  10. Monitor telemetry data
  11. Make it easy for consumers to delete personal data
  12. Make installation and maintenance of devices easy
  13. Validate input data

At this point, the CoP is perhaps the best-established and most targeted guidelines. In 2020, the guidelines were adopted as an international standard: ETSI EN 303 645. The European Union (EU) has announced that it will adopt these guidelines and make them mandatory. Singapore and Finland have also adopted consumer IoT cybersecurity regulations and labeling schemes.

Although these schemes were initially voluntary, they are gradually becoming mandatory. As attacks and problems mount, more countries will likely adopt these guidelines and make them mandatory. Mandatory regulations usually include penalties and, in this case, could eventually prevent the sale of products within the regulating region.

In May 2020, the U.S. National Institute of Standards and Technology (NIST) released information report (IR) NISTIR 8259A, IoT Device Cybersecurity Capability Core Baseline [2]. This document provides baseline cybersecurity best practices and guidance for IoT device manufacturers. Table 2 shows the six capabilities recommended by this document.

  1. Unique logical and physical IDs
  2. Only authorized entities can change device configuration
  3. Protect stored and transmitted data from unauthorized access and mods
  4. Restrict access to local and network interfaces, protocols and services
  5. Permit software and firmware updates using secure, configurable mechanism
  6. Report device cybersecurity state to authorized parties

In December 2020, the IoT Cybersecurity Improvement Act of 2020, previously approved by both Houses of Congress by unanimous consent, was signed into law by the president. This unprecedented unity to address a national security problem in these contentious times confirms its importance and the confidence in the solution.

The provisions contained in this bill direct NIST to develop guidelines for security of IoT devices purchased by the government. It also directs the Office of Management and Budget to develop rules for agencies to follow when they purchase IoT devices in the future. In November 2021, NIST released their guidelines as NIST SP 800-213 [3] and NIST SP 800-213A. Essentially, these guidelines say that IoT devices must meet all of the usual government cybersecurity requirements, subject to an analysis of the risks and countermeasures present in the particular context.

Two other U.S. cyber security requirements were implemented by the executive branch in response to major attacks. One was developed in response to the SolarWinds cybersecurity attack (discovered Dec 13, 2020) [4]. The other was the response to the Colonial Pipeline Cyber Attack (April 2021) [5]. In addition to activity at the federal level, other legislation in the United States is occurring at the state level [6, 7].

This growing trend of IoT security regulations seems unlikely to abate soon. Rather, governments are moving actively to address the risks that IoT devices present.

IoT Defenses
Different security defenses are required in many facets of the IoT to avoid weaknesses for exploitation to satisfy security requirements. Figure 2 identifies 10 areas, many of which are outlined in the UK CoP and other regulations. However, without the help of security experts, it is not realistic to expect IoT device manufacturers to know the right defenses to employ. Device manufacturers are experts, and even world leaders, in building equipment such as washing machines, cars, and other products. However, the required depth of knowledge in networked device security is not often readily available in their organizations

Security hardware makes it easier for product manufacturers to design and produce secure IoT devices and makes it easier for users to install and use these devices. For example, Infineon offers a wide range of security hardware products, allowing the customer to choose the product that best meets the needs of their application.

How to Meet the Toughest Regulations
A careful look at the UK Code of Practice and NISTIR 8259A shows that many of the requirements are best met with hardware security. The choice of hardware over software-based security will not change with new legislation and regulations.

Security for Today and the Future
After years of attackers exploiting IoT device weaknesses, governments around the world are finally starting to take preventive action. With its intent “to ensure that products are secure by design,” the UK Code of Practice1 provides excellent guidelines for what is needed to provide security in today’s IoT devices.

Thus, it is not surprising that these rules are being adopted in the European Union’s and Singapore’s regulations. Similar requirements are found in USA guidelines such as NISTIR 8259A. As demonstrated by NISTIR SP 800-213 and recent executive orders, these rules are tightening over time as more security is needed. To avoid premature product obsolescence, device manufacturers should adopt strong security solutions like the AIROC, PSoC and OPTIGA™ solutions that can be used to meet the increasingly stringent requirements for IoT security emerging from governments all around the world.

Doing the best job possible for designing an IoT product starts with hardware-based security to provide best-in-class security and preparation for the most rigorous security requirements --- both today and in the future.

References:
1. https://www.gov.uk/government/publications/code-of-practice-for-consumer-iot-security
2. https://www.nist.gov/news-events/news/2020/06/security-iot-device-manufacturers-nist-publishes-nistirs-8259-and-8259a
3. https://csrc.nist.gov/News/2021/updates-to-iot-cybersecurity-guidance-and-catalog
4. Executive order on improving the nation’s cybersecurity, and Security Memorandum on improving cybersecurity for critical infrastructure control systems: https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
5. https://www.whitehouse.gov/briefing-room/statements-releases/2021/07/28/national-security-memorandum-on-improving-cybersecurity-for-critical-infrastructure-control-systems/
6. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180SB327
7. https://gov.oregonlive.com/bill/2019/HB2395/

This article originally appeared in the May / June 2022 issue of Security Today.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions. 3

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction. 3

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation. 3