Using AI in Security Camera Surveillance Can Help us Evolve from Status Quo Security

The status quo of physical security relies on gates, guards, and guns. These longtime traditional security measures are increasingly scrutinized in today’s rapidly evolving world as we transition to embracing AI, particularly in the realm of security camera surveillance.

The security camera is a technological aid that has helped the triage of traditional security elements, but these cameras often serve as forensic tools for post-event analysis rather than proactive security solutions. Those responsible for monitoring these security cameras can be prone to errors in judgment or can miss critical cues that a more analytical, AI-driven approach might catch.

We can look to technology to push the boundaries of what's possible in ensuring safety and security. Here are some examples:

  • Object Recognition: Advanced AI systems can detect and identify objects that may pose security risks, such as unattended bags or weapons in public areas. This technology extends the capabilities of surveillance beyond mere visual recording.
  • Thermal Imaging and Night Vision: AI enhances thermal and night vision technologies, allowing for effective surveillance in low-light or no-light conditions, and can even detect temperature anomalies that could indicate fires or chemical spills.
  • Behavior Analysis: AI algorithms can analyze behavior patterns, identifying anomalies that could indicate suspicious activities. This proactive approach allows for early detection of potential threats, such as someone loitering in a sensitive area or exhibiting unusual behavior.
  • Crowd Analysis: In scenarios with large crowds, AI can analyze crowd dynamics to identify potential risks, like crowd crushes or rapidly evolving disturbances, enabling quicker response to emerging situations.
  • License Plate Recognition: AI is used to read and catalog license plates, which is valuable in monitoring vehicle traffic, tracking stolen vehicles, or enforcing parking and traffic regulations.
  • Facial Recognition: AI-powered cameras are increasingly capable of identifying individuals through facial recognition technology. This application is beneficial in access control and identifying persons of interest.

However, there are many significant adoption challenges that every organization needs to address when introducing new AI capabilities, such as:

  • Privacy Concerns: The use of AI in surveillance, particularly facial recognition, raises significant privacy concerns. There are ethical considerations around consent and the potential for misuse of personal data, which must be carefully managed.
  • Regulatory and Ethical Frameworks: The rapid development of AI in surveillance outpaces the establishment of comprehensive regulatory and ethical frameworks, leading to a gray area regarding legal and moral boundaries.
  • Accuracy and False Positives: One of the most significant challenges is ensuring the accuracy of AI systems. Misidentification, false positives, and the inability to distinguish between harmless anomalies and genuine threats can lead to unnecessary alarms and security responses. This unnecessary noise can be overwhelming and lead to security personnel turning off AI features and making the AI system irrelevant.
  • Cost of Implementation and Maintenance: High-quality AI systems require substantial investment in technology and ongoing maintenance and updates to ensure they remain effective and secure against evolving threats. This is especially true in systems requiring specialized hardware, cameras, or servers.
  • Context and False Negatives: In typical applications, AI lacks the contextual, human-level understanding of what is happening in its environment and what happened before and after a given event. As a result, AI cannot identify issues leading to False Negatives. For example, the camera captures people running away from a violent event that is happening outside the camera view.
  • Dependence on Quality Data: AI systems are only as good as the data they are trained on. Inconsistent, low-quality, or biased data can lead to ineffective or discriminatory surveillance practices. Identifying such data gaps would require organizations to conduct ongoing tests to validate the system's effectiveness, placing even more stress on understaffed security personnel.
  • Integration with Existing Systems: Integrating AI into existing security infrastructure can be challenging, as it often requires significant upgrades or overhauls of current systems. It often leads to a disjointed security posture, and organizations adopt different solutions for different use cases.

It is important to be thoughtful about these challenges when adopting new AI capabilities in security camera surveillance. And by integrating comprehensive surveillance, predictive analytics, and real-time response capabilities, it’s time to enhance physical security and redefine what it means to be secure in the modern world.

About the Author

Dmitry Sokolowski, CTO, VOLT AI

Featured

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

  • Empowering and Securing a Mobile Workforce

    What happens when technology lets you work anywhere – but exposes you to security threats everywhere? This is the reality of modern work. No longer tethered to desks, work happens everywhere – in the office, from home, on the road, and in countless locations in between. Read Now

  • TSA Introduces New $45 Fee Option for Travelers Without REAL ID Starting February 1

    The Transportation Security Administration (TSA) announced today that it will refer all passengers who do not present an acceptable form of ID and still want to fly an option to pay a $45 fee to use a modernized alternative identity verification system, TSA Confirm.ID, to establish identity at security checkpoints beginning on February 1, 2026. Read Now

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

New Products

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.