Researchers Propose New Way of Detecting Concealed Radioactive Material

Researchers at the University of Maryland have proposed a scheme for detecting a concealed source of radioactive material without searching containers one by one. Detection of radioactive material concealed in shipping containers is important in the early prevention of "dirty" bomb construction. The concept, described in the Journal of Applied Physics, is based on the gamma-ray emission from the radioactive material that would pass through the shipping container walls and ionize the surrounding air.

The facilitated breakdown of the air in a focused beam of high-power, coherent, terahertz or infrared radiation would then be an indicator of the presence of the radioactive material. The gamma rays coming through the container walls could be detected by a pulsed electromagnetic source of duration between 10 ns to microseconds.

The team evaluated several candidate sources for this detection, including a 670-GHz gyrotron oscillator with 200-kW, 10-µs output pulses and a TEA CO2 laser with 30-MW, 100-ns output pulses. A system based on the 670-GHz gyrotron would have enhanced sensitivity and a range exceeding 10 m.

  • Fresh Security Perspective from AMAG’s New Sales Director A Fresh Perspective on Security

    Fred Nelson may be new to the security industry but his sales and leadership methods are time tested, and true. Fred joined AMAG only a few months ago, but brings with him a wealth of experience in sales and life balance solutions. This year is off to a good start for AMAG with new solutions on the horizon.

Digital Edition

  • Security Today Magazine - April 2022

    April 2022

    Featuring:

    • Similarities at Data Centers and Airports
    • Transitioning to the Cloud
    • Going High Tech
    • The Benefits of On-site Security
    • Optimizing Store Layouts

    View This Issue

  • Environmental Protection
  • Occupational Health & Safety
  • Infrastructure Solutions Group
  • Spaces4Learning
  • Campus Security & Life Safety