Tailor-Made Enzymes Protect Against Nerve Gas

Protection against nerve gas attack is a significant component of the defense system of many countries around the world. Nerve gases are used by armies and terrorist organizations, and constitute a threat to both the military and civilian populations, but existing drug solutions against them have limited efficiency.

A multidisciplinary team of scientists at the Weizmann Institute of Science succeeded in developing an enzyme that breaks down such organophosphorus nerve agents efficiently before damage to nerves and muscles is caused. Their results were recently published in the journal Nature Chemical Biology. Recent experiments performed in a U.S. military laboratory (the U.S. Army Medical Research Institute of Chemical Defense, or USAMRICD) have shown that injecting a relatively small amount of this enzyme into animals provides protection against certain types of nerve agents, for which current treatments show limited efficacy.

Nerve agents disrupt the chemical messages sent between nerve and muscle cells, causing loss of muscle control and ultimately leading to death by suffocation. Such agents interfere with the activity of acetylcholinesterase (AChE), the enzyme responsible for the breakdown of the chemical messenger acetylcholine. As a result, acetylcholine continues to exert its effect, resulting in constant muscle contraction throughout the body.

Several drugs exist that are used to treat cases of nerve agent poisoning. Although these drugs are somewhat effective when exposed to small doses of the nerve agent, they do not provide protection against high-dose exposure; they are not effective against all types of nerve agents; or they cause serious side effects. Neither are they able to prevent nor repair cerebral and motor nerve damage caused by the nerve agent.

An ideal solution to the problem is to use enzymes -- proteins that speed up chemical reactions -- to capture and break down the nerve agent before it gets the chance to bind to the AChE, thereby preventing damage. The main obstacle facing the realization of this idea, however, is that nerve agents are manmade materials and, therefore, evolution has not developed natural enzymes that are able to carry out this task.

Scientists worldwide have previously succeeded in identifying enzymes that are able to break down similar materials, but these enzymes were characterized by low efficiency. Large amounts of the enzyme were therefore required in order to break down the nerve agent, rendering their use impractical.

This is where Prof. Dan Tawfik of the Weizmann Institute’s Department of Biological Chemistry enters the picture. Prof. Tawfik’s group developed a special method to artificially induce “natural selection” of enzymes in a test tube, enabling them to engineer “tailor-made” enzymes.

The method is based on introducing many mutations to an enzyme, and then scanning the variety of mutated versions that were created in order to identify those that exhibit improved efficiency. These improved enzymes then repeatedly undergo further rounds of mutations and selection for higher efficiency. In previous studies, Prof. Tawfik showed that this method can improve the efficiency of enzymes by factors of hundreds and even thousands.

For the current task, Prof. Tawfik selected an enzyme, known as PON1, that has been extensively studied in his laboratory. The main role of this enzyme, found naturally in the human body, is to break down the products of oxidized fats that accumulate on blood vessel walls, thus preventing atherosclerosis. But PON1 seems to be a bit of a “moonlighter,” as it has also been found to degrade compounds belonging to the family of nerve agents.

However, because this activity has not fully evolved and developed through natural selection, PON1’s efficiency in carrying out the task remains very low. But by using the directed evolution method, the scientists hope that they will be able to evolve this random “moonlighting” activity into PON1’s main “day job,” which would be carried out more quickly and efficiently than before.

In the first phase, Prof. Tawfik and his team, including research fellow Dr. Moshe Goldsmith and postdoctoral student Dr. Rinkoo Devi Gupta, induced a number of mutations in PON1 -- some random and others directed at key sites on the enzyme. To identify the most effective PON1 mutants, the scientists joined forces with Yacov Ashani of the Department of Structural Biology.

The method that the scientists developed closely mimics what happens in the body upon exposure to nerve agents: They put the AChE in a test tube together with a specific mutant PON1 enzyme that they wanted to test, and added a small amount of nerve agent. In cases where the AChE continued to function properly, it could be concluded that PON1 rapidly degraded the nerve agent before it was able to cause damage to the AChE.

After several rounds of scanning, the scientists succeeded in indentifying active mutant enzymes, which are able to break down the nerve agents soman and cyclosarin effectively before any damage is caused to the AChE. These mutant enzymes have been structurally analyzed by a team of scientists, including Profs. Joel Sussman and Israel Silman and research student Moshe Ben-David, from the Department of Structural Biology. Further experiments have shown that when these enzymes were given as a preventative treatment before exposure, they afforded animals near-complete protection against these two types of nerve agents, even when exposed to relatively high levels.

The scientists plan to further expand the scope of their research and develop preventive treatment that provides protection against all types of existing nerve agents. They are also trying to develop enzymes with high enough efficiency to be able to very rapidly break down the nerve agents, so that they can be used to prevent the lethal effects of nerve agents by injection immediately after exposure.

Prof. Dan Tawfik’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Willner Family Leadership Institute for the Weizmann Institute of Science; the Sassoon and Marjorie Peress Philanthropic Fund; Miel de Botton Aynsley, UK; Samy Cohn, Brazil; Mario Fleck, Brazil; Yossie Hollander, Israel; and Roberto and Renata Ruhman, Brazil. Prof. Tawfik is the incumbent of the Nella and Leon Benoziyo Professorial Chair.

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • New Research Shows a Continuing Increase in Ransomware Victims

    GuidePoint Security recently announced the release of GuidePoint Research and Intelligence Team’s (GRIT) Q1 2024 Ransomware Report. In addition to revealing a nearly 20% year-over-year increase in the number of ransomware victims, the GRIT Q1 2024 Ransomware Report observes major shifts in the behavioral patterns of ransomware groups following law enforcement activity – including the continued targeting of previously “off-limits” organizations and industries, such as emergency hospitals. Read Now

  • OpenAI's GPT-4 Is Capable of Autonomously Exploiting Zero-Day Vulnerabilities

    According to a new study from four computer scientists at the University of Illinois Urbana-Champaign, OpenAI’s paid chatbot, GPT-4, is capable of autonomously exploiting zero-day vulnerabilities without any human assistance. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.” 3