Crystals Detect Threats to National Security

Using a crystal ball to protect homeland security might seem far-fetched, but researchers at Wake Forest University and Fisk University have partnered to develop crystals that can be used to detect nuclear threats, radioactive material or chemical bombs more accurately and affordably.

The research is made possible by a $900,000 grant from the Office of Nuclear Nonproliferation Research and Development of the National Nuclear Security Administration, within the U.S. Department of Energy.

The grant will support both universities’ continued research in the area of radiation detection, which ultimately could lead to improved detector devices for screening cargo containers at ports, airports and border crossings. It would detect trace amounts of radioactive or chemical material – similar to a CT scan or PET scan detecting a tumor in the human body – and lead to better medical diagnostics.

“This grant is an acknowledgement of Fisk and Wake Forest’s excellence and leadership in the field of radiation detection research,” said Fisk University Professor of Physics and Vice Provost Arnold Burger.

Researchers at Fisk and in national laboratories previously discovered that strontium iodide crystals doped with europium are able to detect and analyze radiation better than most other detection materials. Wake Forest researchers recently demonstrated the unexpectedly crucial role of specific parameters – electron and hole mobilities – needed to predict the best energy resolution of a given detector crystal.

Currently, expense is an issue because of the large quantities of the crystalline material ultimately needed for widely deployed screening devices. However, strontium iodide already performs much better than the most affordable detectors currently used, and the scientists are optimistic that with the right calculations and adjustments, crystals of the needed quality and size can be grown and produced affordably.

“Unexpected radiation situations are a fact of our modern world,” said Dr. Richard Williams, Professor of Physics at Wake Forest. “By improving radiation detection and diagnostics, our research will benefit medical advancement as well as international security.”

Featured

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

  • AI Used as Part of Sophisticated Espionage Campaign

    A cybersecurity inflection point has been reached in which AI models has become genuinely useful in cybersecurity operation. But to no surprise, they can used for both good works and ill will. Systemic evaluations show cyber capabilities double in six months, and they have been tracking real-world cyberattacks showing how malicious actors were using AI capabilities. These capabilities were predicted and are expected to evolve, but what stood out for researchers was how quickly they have done so, at scale. Read Now

  • Why the Future of Video Security Is Happening Outside the Cloud

    For years, the cloud has captivated the physical security industry. And for good reasons. Remote access, elastic scalability and simplified maintenance reshaped how we think about deploying and managing systems. Read Now

  • UL Solutions Launches Artificial Intelligence Safety Certification Services

    UL Solutions Inc., a global leader in safety science, today announced the launch of artificial intelligence (AI) safety certification services, enabling comprehensive assessments for evaluating the safety of AI-powered products. Read Now

  • ESA Announces Initiative to Introduce the SECURE Act in State Legislatures

    The Electronic Security Association (ESA), the national voice for the electronic security and life safety industry, has announced plans to introduce the SECURE Act in state legislatures across the country beginning in 2025. The proposal, known as Safeguarding Election Candidates Using Reasonable Expenditures, provides a clear framework that allows candidates and elected officials to use campaign funds for professional security services. Read Now

    • Guard Services

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.