Crime-fighting Tool Identifies Suspicious Individuals at Crime Scenes

It's become a standard plot device of television detective shows: criminals returning to the scene of the crime. And law enforcement officials believe that perpetrators of certain crimes, most notably arson, do indeed have an inclination to witness their handiwork. Also, U.S. military in the Middle East feel that IED bomb makers return to see the results of their work in order to evolve their designs.

Now a team of University of Notre Dame biometrics experts are developing a crime-fighting tool that can help law enforcement officials identify suspicious individuals at crime scenes.

Kevin Bowyer and Patrick Flynn of Notre Dame's Computer Science and Engineering Department have been researching the feasibility of image-based biometrics since 2001, including first-of-their-kind comparisons of face photographs, face thermograms, 3-D face images, iris images, videos of human gait, and even ear and hand shapes.

While attending a meeting in Washington, D.C, Bowyer listened as military and national security experts discussed the need for a tool to help identify IED bombers in the Middle East.

He decided to join forces with Flynn and Jeremiah Barr, a doctoral student in computer science and engineering, to tackle the challenge he heard expressed at the Washington meeting. The researchers developed a "Questionable Observer Detector (QuOD)" to identify individuals who repeatedly appear in video taken of bystanders at crime scenes.

The challenge was especially daunting because the researchers lacked a data base to compare faces against. Also, many times crime scene videos are shot by witnesses using handheld videos and are often of poor quality. Additionally, many criminals try to disguise their appearance in various ways.

In response, the Notre Dame team focused on an automatic facial recognition tool that didn't need to match people against an existing database of known identities. Instead, Bowyer, Flynn and Barr create "face tracks" for all individuals appearing in a video and repeat the process for all available video clips. The face tracks are compared to determine if any faces from different video clips look similar enough to match each other. When the technology spots a match, it adds it to a group of video appearances featuring just that person. In this way, it attempts to cluster together the pieces of different video clips that represent the same person.

An individual is considered suspicious if he or she appears too frequently in the set of videos. The "too many" number is determined by law enforcement officials based on the number of crimes and videos available.

Although the technology shows great promise, Bowyer, Flynn and Barr admit they still have serious technical challenges they are working to overcome. Optimum facial recognition technology requires high quality lighting and video resolution, which is often unavailable at crime scenes. Also, people may not be looking directly at the camera in video of crowds of bystanders. And the identification of a questionable observer becomes more computationally demanding in cases where there a large number of videos to be analyzed.

The researchers are confident, however, that these challenges can be overcome and are continuing to work to improve their system. They are also confident that civil liberties concerns are minimized and positive social benefit is invovled, given that the tool helps officials identify individuals by their actual presence at multiple crime scenes rather than by suspicion.

Featured

  • Security Industry Association Announces the 2026 Security Megatrends

    The Security Industry Association (SIA) has identified and forecasted the 2026 Security Megatrends, which form the basis of SIA’s signature annual Security Megatrends report defining the top 10 factors influencing both near- and long-term change in the global security industry. Read Now

  • The Future of Access Control: Cloud-Based Solutions for Safer Workplaces

    Access controls have revolutionized the way we protect our people, assets and operations. Gone are the days of cumbersome keychains and the security liabilities they introduced, but it’s a mistake to think that their evolution has reached its peak. Read Now

  • A Look at AI

    Large language models (LLMs) have taken the world by storm. Within months of OpenAI launching its AI chatbot, ChatGPT, it amassed more than 100 million users, making it the fastest-growing consumer application in history. Read Now

  • First, Do No Harm: Responsibly Applying Artificial Intelligence

    It was 2022 when early LLMs (Large Language Models) brought the term “AI” into mainstream public consciousness and since then, we’ve seen security corporations and integrators attempt to develop their solutions and sales pitches around the biggest tech boom of the 21st century. However, not all “artificial intelligence” is equally suitable for security applications, and it’s essential for end users to remain vigilant in understanding how their solutions are utilizing AI. Read Now

  • Improve Incident Response With Intelligent Cloud Video Surveillance

    Video surveillance is a vital part of business security, helping institutions protect against everyday threats for increased employee, customer, and student safety. However, many outdated surveillance solutions lack the ability to offer immediate insights into critical incidents. This slows down investigations and limits how effectively teams can respond to situations, creating greater risks for the organization. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis.

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.