A Browsing Challenge

A Browsing Challenge

Analysts are challenging malicious extension risks

Google Chrome is largely considered one of the most security-conscious browsers, but recent headlines revealed some of its weaknesses. Reporting indicates that four of Chrome’s most popular extensions, which have amassed more than 500,000 downloads in total, are thought to be malicious.

The suspect extensions have since been banned from the Chrome Web Store, but the news highlights the inherent risk of browsers and third-party apps, which warrant deeper examination.

Ongoing Browser Extension Risks

Google has made significant efforts to enhance the security of its browser. In addition to more commonly-known measures, the company invests in bug bounties and other competitions to help root out some of the major problems that could be exploited by a high-skilled attacker, and takes a forward-thinking approach when it comes to user privacy. These measures do make it harder for hackers, but with so much market share and interest from the security community, vulnerabilities will continue to be discovered. Additionally, because extensions are generally created by third-party vendors, it’s a great source of unknown.

When it comes to extensions, Chrome requires downloads directly from the Chrome Web Store for major OSes (Windows/ OS X). However, it doesn’t seem as though there are any security checks conducted on these extensions before they’re published. This means it would take a critical mass of security-related complaints before Chrome would be made aware of any problem. That’s not to blame Google—even if its extensions were subject to the same scrutiny used for Android apps in the Google Play Store, no checks are perfect. We still see news about malicious apps making their way into the public arena in the Google Play Store several times a year.

With communications allowed between extensions, it’s also theoretically possible for an adversary with two or more extensions installed on a user’s browser to covertly pass information or perform different parts of an attack on the system. Then, there’s the problem of very carefully-hidden Trojan extensions and the ability to hijack and implant code into a trusted developer’s development system. These are all potential ways in for persistent and sophisticated attackers.

This is not to pick on Chrome—other browsers absolutely hold malicious extensions. Firefox still allows add-ons (their extensions) to be hosted external to their store, which eliminates a central point for management. Its publishing process is also less than rigorous, and seems to focus only on code correctness. And while Safari does review extensions before including them in the App Store, we still hear of malicious apps appearing there from time to time.

Identifying Malicious Extensions

For security analysts, identifying malicious extensions is no easy task. They aren’t going to show up in places analysts typically monitor such as CMDBs or logs. The only way to find them is on the network. If analysts are looking for something that the extension happens to do—such as leaking passwords in an obvious way or matching a network signature or indicator of compromise for malicious activity—it’s possible that their security tools will generate alerts pointing them to the related traffic that occurs after the fact.

If the tool an analyst is using has the ability to parse HTTP headers in a meaningful way, they may also be able to find malicious extensions by identifying these behaviors while looking for the Chrome-Extension value within the header. With more flexible query language offered by cutting-edge tools, it’s easy to become more or less specific with respect to what you’re looking for within HTTP, whether it be the headers or some other location.

In short, the original discovery of the malicious extension information and ways it is stored would likely be by chance or by deep investigation. However, if a tool the analyst uses has the ability to spot malicious activity, then the hard work of identifying the bad extension can be done by one researcher and reused by many.

The Challenge in Responding to Malicious Extensions

While finding a malicious extension is a major challenge, it’s still only the first step. The ability to contextualize the behavior associated with the session with respect to the device and its peers is where the baggage of current-version technologies slows analysts down.

Once a malicious extension is detected, analysts will quickly want to know what to do to stop the bleeding. Are any external communications related to this? Is any information being exfiltrated? What kinds of attacks are occurring internally? Is any pivoting/ lateral movement behavior happening with stolen credentials, possibly accessing more sensitive data? They’ll also quickly want to know who else is affected—spanning both devices, and users—when they were infected, which browsers and versions are impacted, whether the decision to install the extension was completely voluntary and more.

Each of the above steps can take tens of minutes to hours— and in some cases, they are impossible given time constraints and resources. The overall security maturity of the organization, and whether or not the security development team has created homegrown solutions to unify typically disparate pieces of information and infrastructure, will determine how effectively this workflow can be handled.

Today, overburdened analysts will typically only do this type of thorough investigation if there’s enough certainty that this is a truly serious incident—there are simply not enough human resources, nor the right incentives in the SOC, to do this deep level of work for naught. Moreover, the problem is exacerbated since existing security technologies provide little to no context—leaving it to the analyst to figure things out.

At Awake Security, we call this problem the Investigation Gap. After prevention methods fail, potential threats are detected and security alerts are generated, the time-consuming and manual heavy-lifting of an investigation falls to the analysts before any remediation steps can be taken. If an organization’s security tools miss a potential threat and no alert is generated, it falls on the analysts to find time to threat hunt and identify malicious activity on their own—a task that’s nearly impossible in most SOCs given their existing alert investigation workload.

The recent Chrome news put a spotlight on malicious browser extensions that underscores the risk incurred when trust is given to third parties. Often that trust is not well understood when given, and quickly forgotten. However, it also points to a deeper underlying issue for analysts working to identify malicious extensions and mitigate their harmful effects.

It’s critical that we find new ways to give analysts deep visibility into the network and streamline their time spent getting from questions to answers during their investigations. Only then will we start gaining ground on this type of challenge.

This article originally appeared in the September 2018 issue of Security Today.

Featured

  • Report: 47 Percent of Security Service Providers Are Not Yet Using AI or Automation Tools

    Trackforce, a provider of security workforce management platforms, today announced the launch of its 2025 Physical Security Operations Benchmark Report, an industry-first study that benchmarks both private security service providers and corporate security teams side by side. Based on a survey of over 300 security professionals across the globe, the report provides a comprehensive look at the state of physical security operations. Read Now

    • Guard Services
  • Identity Governance at the Crossroads of Complexity and Scale

    Modern enterprises are grappling with an increasing number of identities, both human and machine, across an ever-growing number of systems. They must also deal with increased operational demands, including faster onboarding, more scalable models, and tighter security enforcement. Navigating these ever-growing challenges with speed and accuracy requires a new approach to identity governance that is built for the future enterprise. Read Now

  • Eagle Eye Networks Launches AI Camera Gun Detection

    Eagle Eye Networks, a provider of cloud video surveillance, recently introduced Eagle Eye Gun Detection, a new layer of protection for schools and businesses that works with existing security cameras and infrastructure. Eagle Eye Networks is the first to build gun detection into its platform. Read Now

  • Report: AI is Supercharging Old-School Cybercriminal Tactics

    AI isn’t just transforming how we work. It’s reshaping how cybercriminals attack, with threat actors exploiting AI to mass produce malicious code loaders, steal browser credentials and accelerate cloud attacks, according to a new report from Elastic. Read Now

  • Pragmatism, Productivity, and the Push for Accountability in 2025-2026

    Every year, the security industry debates whether artificial intelligence is a disruption, an enabler, or a distraction. By 2025, that conversation matured, where AI became a working dimension in physical identity and access management (PIAM) programs. Observations from 2025 highlight this turning point in AI’s role in access control and define how security leaders are being distinguished based on how they apply it. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.