INDUSTRY PROFESSIONAL

Analytics Uncovered

Part 1 – Terminology. If you are in the physical security industry, there’s no escaping discussion on video analytics, their advanced capabilities and the barrage of terminology being associated with what promises to be a turning point for physical security and business intelligence applications.

What does it all mean, and where to start?

Here is information on video analytics accessible and easy to understand for all. We will take a high-level look at various aspects of today’s intelligent, AI-driven video analytics. From what analytics really can do, to how they work, to where they can be best applied and even how they differ. The goal is not to be Ph.D.-perfect, but to provide the tools you need to understand the world of analytics. It is down-to-earth, and a no-frills guide for you.

What is New
Before diving in, it is important to understand how analytics got to where it is today.
Traditional programming consists of using data inputs and written programs to provide an output or action. Essentially, software engineers write code to instruct machines how to act. Machines then follow the instructions, repeating the required action over again.

In contrast, Machine Learning is more akin to human learning, and humans learn by patterns, not by simply following instructions. As babies, we recognize that crying leads to receiving food. As adults, we bring an umbrella with us on a cloudy day. We are conditioned to problem-solve based by observing examples of actions and reactions.

The new world of AI-driven video analytics is a pattern recognition on a massive scale. Known actions and their corresponding reactions analyzed by software, and through the process of machine learning, provided with programs that can detect, analyze new and evolving patterns.

A fundamental example is AI-driven video analytics for smoke detection. Computers get images, and videos of smoke (input) and provided with alerting (output). Machine learning creates a program that recognizes smoke, and thus alerts users to its occurrence.

Large-scale pattern recognition is applied at the micro level. Smoke may not be visible to the naked eye, but computers can look at instances of smoke on a pixel-by-pixel level. The ability to use machine learning in this way makes it possible to problem-solve in ways not previously possible by humans. This is the present and future of analytics today.

Terminology, Simplified
There are several key terms in the exploration of AI-driven video analytics. Some we have touched on briefly already and are likely to touch on again. Others you will also see used as marketing buzzwords to make a company sound “innovative” or “advanced,” but are often not used correctly, further contributing to AI-driven video analytics’ mystique.

The following is a glossary of terms designed to give necessary information without the need for a software engineering degree.

Algorithm. Instructions embedded in computer software to convert inputs (questions) to outputs (answers).
Artificial Intelligence. A broad, wide-ranging term to describe the process of making machines and computers capable of performing tasks traditionally relegated to human intelligence.
Computer Vision. Uses video and digital images to extract data for analysis.
Machine Learning. A subset of AI that allows machines to learn from patterns.
Deep Learning. A subset of Machine Learning that seeks to mimic how the human brain works to create patterns and make predictions.
Model. The output of a Machine Learning algorithm that results in pattern recognition. Also known as a program.
Training. The process of sending evidence, or examples of what is necessary, to the computer to create a model.
Inference. The process of putting the model into action to make a prediction.

Understanding Deep Learning
Deep Learning is perhaps the most advanced subset of AI. Since it attempts to mimic the human brain, it far surpasses the brain’s capabilities – and it does so via Neural Networks.

Imagine you are viewing a blurry scene. Add a lens like when undergoing an eye exam, and the scene becomes clearer. Add another lens, and even more definition is visible. The more lenses added, the sharper and more detailed is the image. This system of adding layers (lenses in this example) to progressively understand a 'scene' is similar to how we think about modern Machine Learning.

Each additional lens becomes its own individual Neural Network. When multiple lenses are added, it is called a Convolutional Neural Network (CNN). Deep Learning is when Machine Layers layers added, each building upon the previous layer to create better patterns to a more complex problem. For example, one Machine Layer may detect a vehicle, the next layer detects a license plate, and the final layer reads the license plate. Each of these layered models can combine to form a Deep Learning Model capable of solving a more complex vehicle identification challenge.

This article originally appeared in the September / October 2022 issue of Security Today.

Featured

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

  • Empowering and Securing a Mobile Workforce

    What happens when technology lets you work anywhere – but exposes you to security threats everywhere? This is the reality of modern work. No longer tethered to desks, work happens everywhere – in the office, from home, on the road, and in countless locations in between. Read Now

  • TSA Introduces New $45 Fee Option for Travelers Without REAL ID Starting February 1

    The Transportation Security Administration (TSA) announced today that it will refer all passengers who do not present an acceptable form of ID and still want to fly an option to pay a $45 fee to use a modernized alternative identity verification system, TSA Confirm.ID, to establish identity at security checkpoints beginning on February 1, 2026. Read Now

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.