Industry Professional

Instruction vs. Deduction: Deep Learning and Advances in VCA

Deep Learning is changing the industry

As camera counts and the data they provide grow ever-larger, it becomes increasingly difficult for organizations to monitor, perform investigations, and draw useful conclusions from the valuable information gathered by their video surveillance infrastructure.

Video analytics have long been seen as a technology solution to help identify activity and information from all the video data. Video analytics have largely fallen short of delivering on that market expectation. However, Deep Learning may change that. But what is Deep Learning, and how can it improve on conventional techniques?

Machine Learning Techniques and VCA

Most Video Content Analytics (VCA) developed to-date have been based on traditional, algorithmic, Machine Learning techniques. Deep Learning is a more advanced evolution of machine learning, using sophisticated, artificial neural networks.

In the context of VCA, both Machine Learning and Deep Learning instruct software to develop a model of objects based on a variety of attributes the software “learns” about those objects. The model helps the software to later identify and categorize an object in the video feed which matches those attributes the software has learned. For instance, an object moving through the camera’s field of view may be taller than it is wide, as opposed to another object, which is wider than it is tall. The VCA software may classify the first object as a person and the second as a vehicle, based on those attributes.

In reality, multitudes of data points are used to classify objects, but some attributes are more important than others. The VCA software will weigh the various criteria it uses to classify objects in order to determine the probability that an object is more likely to be a person, vehicle or something else. Once an object enters the scene, the object is analyzed, and its properties are measured. To determine what an object is, the VCA may begin by looking at the object’s dimensions, color variation, and movement patterns.

For example, the software determines the object is wider than it is tall, is primarily red, and is moving at a relatively rapid pace in a single direction. Based on these observations, those attributes are compared to the existing model of what properties represent a car, a person, or other objects. Based on the comparison against existing models, the VCA software finds the object is 88 percent likely to be a vehicle, seven percent a person, and 22 percent “other.” The object is identified as a car, and data is collected along with the video which may allow the user to later perform a search on all red cars travelling from left to right in the scene.

Limitations of Machine Learning Analytics

Machine Learning creates a model of an object based on data fed to the program by its developers. This data is compiled by people, and will therefore be inherently limited to the set of attributes a developer chooses to collect and feed to the program.

To continue with the “person versus vehicle” example, an object may be classified as a person by Machine Learning VCA if the dimensions of the object show a greater height than width, as opposed to a vehicle, which may be wider than it is tall. Given those criteria, VCA classification may fail in the case of a person crawling through a scene, or a person carrying a long box. In both examples, the algorithm assumes the person will be standing upright and the dimensions will not be skewed by any other objects the person is holding, such as the box.

Such challenges with accuracy have been one of many issues plaguing the reputation of analytics for years in the video security market.

Advances using Deep Learning

Using Deep Learning, the program is fed many example images, and told those images represent a person, a car, an elderly woman, or any variety of very specific categories of objects the program may be tasked to classify unknown objects to. The major advancement of Deep Learning is that it is the software that determines what attributes are used for classification, and not the human developers.

The example images could number in the tens of thousands or greater, and the images may demonstrate the object from different angles, different light conditions, different regions of the world, and so forth. Because Deep Learning allows the software to determine object attributes based on real image examples, there are no preconceived notions as to what defines an object. Provided the image library fed to the program is sufficiently diverse there should be no inherent biases as to what attributes may define an object and no significant limit to the number of attributes which can be used for classification.

What the Future Holds

Deep Learning is still a relatively new technology; however, some say this technique may lead to computers being able to recognize objects better than people can, and with less data, in the future.

Presently, object classification is limited to how much training the VCA program receives, the diversity of the examples used to train the program, and the processing power available to perform accurate object detection and classification on video in real time.

Near term advances in algorithm training will come from developers using video instead of static images in the training process. Software trained using video clips could lead to VCA making classifications based on multi-faceted attributes. VCA could observe and note that cars travel on roads, whereas people walk on sidewalks. Attributes such as speed, movement patterns, where an object is located in the scene, walking gait, and other factors could be considered by analytics for better detection.

Training, detection improvements, and greater processing power combined with Deep Learning techniques could make near perfect accuracy a future reality for VCA.

This article originally appeared in the April 2018 issue of Security Today.

Featured

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

  • Report: Nearly 1 in 5 Healthcare Leaders Say Cyberattacks Have Impacted Patient Care

    Omega Systems, a provider of managed IT and security services, today released new research that reveals the growing impact of cybersecurity challenges on leading healthcare organizations and patient safety. According to the 2025 Healthcare IT Landscape Report, 19% of healthcare leaders say a cyberattack has already disrupted patient care, and more than half (52%) believe a fatal cyber-related incident is inevitable within the next five years. Read Now

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.