AI on the Edge

Are AI-based analytics best processed in the cloud, on the edge or on a dedicated server? The answer Is “It depends.”

Discussions about the merits (or misgivings) around AI (artificial intelligence) are everywhere. In fact, you’d be hard-pressed to find an article or product literature without mention of it in our industry. If you’re not using AI by now in some capacity, congratulations may be in order since most people are using it in some form daily even without realizing it.

When it comes to security, you have probably heard that AI is here to stay. It is the perfect assistant to security teams that cannot possibly watch all the video streams being generated by an organization 24/7/365. And it is certainly the only thing that can stay awake doing it. When we think of AI in physical security cameras, we mainly think about its ability to recognize and describe known objects such as people and vehicles.

That ability to recognize and describe unique attributes about an object such as a person’s shoe color, and whether they are carrying a bag or wearing a hat is extremely valuable to inform our analytics. The analytics algorithms benefit greatly the more a smart camera can tell them about the characteristics of the person who is standing outside a loading dock at 4 a.m. It is this marriage of AI-based object recognition and analytics that is revolutionizing our industry by helping security teams be more proactive to potential threats versus simply reacting to events that already happened.

AI will soon be commonplace in most every surveillance camera model offered for the simple reason that it makes such cameras smart, IoT devices. It’s a value-added feature that we’ll soon wonder how we ever lived without it since there are more cameras deployed than can be possibly monitored by human operators.

Not all AI is equal however, because there are different methods and models available to sort through the information that is harvested. One of the biggest differences is where the AI processing is done. Is it in the camera itself (also known as the edge) or is it on a server on premises? Maybe it is not on site at all and is being processed in the cloud? Where the information is processed can have a significant impact on the type of results obtained and the speed in which those results are available.

Edge, Cloud or Dedicated Servers? That is the question.
Running AI on the edge, in the cloud, or on dedicated servers each have their own set of advantages and considerations. Choosing between these options depends on the specific use case, processing requirements, and limitations of the infrastructure used to transport the data.

For example, it might be OK to send all your video streams to the cloud to run AI analytics for 10 cameras, but what about 100 or 500 cameras? With more raw video feeds travelling over the wide area network, the costlier it is going to be in terms of bandwidth and server load. Of course, the cloud is known for its scalability, but decompressing a compressed stream of video and running it through AI-based analytics all takes time which can lead to latency and delays when you need to react quickly to an important event where seconds count.

Benefits of Edge-based AI Analytics
Low latency. Being able to run AI-based analytics on the edge means analyzing footage the moment it hits the sensor, potentially even before it is compressed to a format like H.264 and sent to a VMS as a video stream. There is no faster way to detect a person or a vehicle and describe the behavior and attributes than doing it on the edge. If you have real-time applications where quick, proactive decision-making is necessary, processing on the edge is the answer. However, if we are only analyzing video footage post event, then the delays inherent to cloud-based analytics might acceptable.

Privacy and data security. Edge computing keeps sensitive data localized, enhancing privacy by minimizing the need to send data to external servers for processing. For example, it might not be legal to record audio along with the video surveillance in certain environments. Sound analytics can instantly notify operators of glass breaks, gun shots, and yells without recording any audio along with the video stream.

Bandwidth efficiency As mentioned previously, processing data on the edge reduces the amount of data that needs to be transmitted to the cloud. Since the amount of data increases rapidly as cameras are added, edge-based analytics can be especially beneficial in scenarios where network bandwidth is limited or expensive.

Offline capabilities. Edge devices can continue functioning even when they are disconnected from the cloud. This is important in situations where a reliable internet connection cannot be guaranteed, such as in remote areas or during network outages.

Regulatory compliance. Some industries, like healthcare or finance, have strict regulations regarding data privacy and residency. Running AI on the edge can help organizations comply with these regulations by keeping data within certain geographical boundaries.

Enhanced reliability. As edge-based processing evolves, distributed edge architectures can enhance system reliability. Even if one edge device fails, others can continue to operate independently, reducing the risk of complete system failures.

The Case for the Cloud
It is important to acknowledge that there are also challenges to consider when deploying AI on the edge, such as limited computational resources, the potential difficulty in maintaining and updating edge devices, and the need to manage and secure a network of IoT-style devices.

Cloud-based and dedicated server solutions offer advantages like scalability, centralized management, and access to powerful hardware, making them well-suited for applications that require extensive computational resources and where low latency is not a critical factor.

The Case for Hybrid Deployments
Using the edge for AI-based object detection and attribute harvesting cannot be beat, but when it comes to comparing that data for use in business and operational intelligence analysis, we frequently need more power.

Hybrid deployments can represent the best of both worlds since edge AI processing can send the lightweight, low bandwidth, resultant data to a dedicated server or cloud-based compute engine for further processing and comparisons to existing databases of information. In this way, hybrid edge/cloud/server deployments represent a powerful combination with no compromises when it comes to crunching big data and finding trends.

Let Your Unique Security Needs Dictate How You Use AI
Ultimately, the decision between edge, cloud, or hybrid deployments depends on factors like your unique latency requirements for real-time alerts, data privacy concerns, available network bandwidth, and the trade-offs between processing power and cost.

One answer seems common to all use cases: at minimum, use edge AI processing as much as possible. If more AI processing is required, consider sending the lighter weight results from the edge to a dedicated server in the cloud or on the ground. Edge-based computing will only get more powerful, but there will always be a limit to how much information the edge can hold when crunching through piles of big data.

Let your unique requirements be your guide.

This article originally appeared in the November / December 2023 issue of Security Today.

Featured

  • Survey: 54% of Organizations Cite Technical Debt as Top Hurdle to Identity System Modernization

    Modernizing identity systems is proving difficult for organizations due to two key challenges: decades of accumulated Identity and Access Management (IAM) technical debt and the complexity of managing access across multiple identity providers (IDPs). These findings come from the new Strata Identity-commissioned report, State of Multi-Cloud Identity: Insights and Trends for 2025. The report, based on survey data from the Cloud Security Alliance (CSA), highlights trends and challenges in securing cloud environments. The CSA is the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment. Read Now

  • Study: Nearly Half of Companies Exclude Cybersecurity Teams When Developing, Onboarding and Implementing AI Solutions

    Only 35 percent of cybersecurity professionals or teams are involved in the development of policy governing the use of AI technology in their enterprise, and nearly half (45 percent) report no involvement in the development, onboarding, or implementation of AI solutions, according to the recently released 2024 State of Cybersecurity survey report from ISACA, a global professional association advancing trust in technology. Read Now

  • New Report Series Highlights E-Commerce Threats, Fraud Against Retailers

    Trustwave, a cybersecurity and managed security services provider, recently released a series of reports detailing the threats facing the retail sector, marking the second year of its ongoing research into these critical security issues. Read Now

  • Stay Secure in 2024: Updated Cybersecurity Tips for the Office and at Home

    Cyber criminals get more inventive every year. Cybersecurity threats continue to evolve and are a moving target for business owners in 2024. Companies large and small need to employ cybersecurity best practices throughout their organization. That includes security integrators, manufacturers, and end users. Read Now

Featured Cybersecurity

Webinars

New Products

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises. 3

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.” 3

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles. 3